

Emulation of Plasma Load Reactances by Saturation Control of Low-Permeability Inductors

Darshan Tagare - Arizona State University
Sanghyeon Park - Lam Research Corporation
Mike K. Ranjram - Arizona State University

Advanced RF Generator Have Complex Behavior

Dr. Sangyheon Park (our collaborator from Lam) sums up the project very well:

Good old days

plasma needed:

RF power:

These days

plasma needed:

Creates a need for advanced RF generators

Problem: Validation and Debugging is Complicated

- New RF generator: miniaturized, lower cost, faster, etc.
- To validate a new RF generator, must install it in a real tool and run it.
- Tool time is a rare commodity, process engineers have immediate deadlines, RF engineers may need weeks/months to iterate and root out all the issues.

Solution: A Dummy Load that Can Mimic Plasmas

- Programmable load allows consistency and speeds up debugging.
- Ideally, dummy load perfectly matches the plasma, but even a close representation is useful.

Modeling Inductively-Coupled Plasmas (ICPs)

Plasma impedance is highly dynamic

Time varying Inductance and Resistance

Dummy load needs:

- Variable resistance (a known unknown, e.g., fixed + controlled resistors).
- Variable reactance an unknown unknown 20% variation in $100 \mu s$.

Our Contribution: HF, Low Permeability, Saturable Inductor Array Design Approach

- Dummy load: $2.5\mu H$ inductor carrying $20A_{pk}$ at 13.56MHz.
- Too large for a single off-the-shelf core, so use a modular design (series/parallel inductors).

A Rich History of Saturation Control

Saturable Reactor

$$L = N^2 \left(\frac{1}{\mathcal{R}_c} + \frac{1}{\mathcal{R}_l} \right)$$

P. Mali, Magnetic Amplifiers Principles and Applications. New York: John F. Rider Publisher, Inc., 1960.

Pros:

- Large inductance due to no gap.
- Large inductance change due to full saturation.

Cons:

- DC windings may see large inductance.
- AC and DC windings are directly coupled(can be mitigated in a multi-core approach).
- Need to ensure small-signal excitation near saturation to avoid distortion.

A Rich History of Saturation Control

Pros:

- Mitigates AC to DC coupling.
- Can be used with gapped construction.

D. Medini and S. Ben-Yaakov, "A current-controlled variable-inductor for high frequency resonant power circuits," in Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition - ASPEC' 94, Feb. 1994, pp. 219–225 vol.1.

Multi-Leg Inductor

$$L = N^2 \left(\frac{1}{\frac{\mathcal{R}_c}{2} + \mathcal{R}_g} + \frac{1}{\mathcal{R}_l} \right)$$

Cons:

- DC winding may see large inductance.
- E-cores (currently)
 uncommon for highfrequency FR67 core
 material.
- Lower inductance variation if a gap is used.

A Rich History of Saturation Control

Pros:

- Total decoupling of AC and DC systems.
- Low inductance on DC windings.

Cons:

- Hard to construct.
- May yield low inductance change.

Virtual Air Gap

$$L = N^2 \left(\frac{1}{R_c + \mathcal{R}_{c,2}} + \frac{1}{\mathcal{R}_l} \right)$$

Research Questions

Are saturable inductors viable for emulating the reactance of a plasma load?

That is, can we:

- 1. Achieve ~20% inductance change with reasonable bias circuitry?
- 2. Ensure linearity of the inductor under saturation?
- 3. Achieve a dynamic inductance response at $100\mu s$?
- 4. Show that a saturable inductor can be modularly scaled?

Key Difference: HF Materials Have Low Permeability

We need a magnetic material with:

Inductive behavior at 13.56 MHz.

Strong susceptibility to saturating fields.

μ'_{S}, μ''_{S} 10 f (MHz) 10³ $\mu_r \approx 80$

Options:

NiZn ferrites: Ferroxcube 4F1,Fair-rite FR67

67 Material Complex Permeability vs. Frequency

$$\mu_r \approx 40$$

11

Low Permeability Changes Saturation Strategies

Saturable Reactor

- Saturation strategies mimic virtual air gap!
- Likely to be linear; unlikely to get big inductance change (but 20% isn't very big).
- We have adopted a multi-legged approach.
 (Please refer to the accompanying paper for a comprehensive analysis of the tradeoffs and selection criteria).

1. Weak coupling and localized saturation

- These can be very leaky designs.
- Leakage inductance difficult thing to predict "on paper" (simple magnetic circuit analysis not appropriate).
- Inductance is a strong function of the ac winding geometry.
- Saturation is a strong function of the dc winding geometry.

Saturable Reactor

2. Perminvar characteristics

- FR67 has properties that change under high magnetic fields.
- Action: "pre-bias" cores by subjecting them to field intensity > 800 A/m

If a part is exposed to a DC bias that is too high, there is an irreversible changes to the losses.

3. Self-resonance

- We target high inductance $(2.5\mu H)$ a small effective capacitance (55.1 pF) can yield 13.56 MHz resonance.
- In particular, capacitance across dc windings can be problematic.
- Action: Minimize dc turns count
 But recognize that parasitics are inherently difficult to model.

4. Un-gapped constructions

- Want to maximize inductance variation, so avoid gap.
- Incur the typical challenges, permeability depends on: temperature, lot-to-lot variation.
- Action: Allow individual biasing of cores in an array.

Design Approach?

- These Low permeability challenges impede a design "on paper", without experimental characterization.
- So, forgo an analytical design framework and develop an "experiment in the loop" design approach, to show the concept has legs.

 16

Design Approach

Select a core material and core set
 Use the largest available cores to minimize the size of the array.

2. Design the ac turns

Start with A_L from datasheet, measure, then (likely) decrease N_{ac} .

T61/35.5/12.7, FR67

Datasheet: $55 nH/N^2$

Designed value $N_{ac} = 5$ $125 nH/N^2$

E58/11/38, 4F1

Datasheet: $450 \, nH/N^2$

Designed value $N_{ac} = 2$ $650 nH/N^2$

Designing the dc turns

3. Then, use a single magnetostatic ANSYS simulation to determine dc biasing MMF applied by dc turns (e.g., $H_{bias} = 18N_{dc}I_{dc}$).

Start with manufacturer bias information (if available)

Small signal and Large signal testing

4. Small signal testing

Use an impedance analyzer to measure dc bias response. Target 0-2.5A for ease of bias implementation.

5. Large signal testing

Ensure the linearity of the inductor under saturation with large signals applied to it.

Solid line- Large signal Dashed line – Small signal

Large signal setup (Using series L and C resonance to calculate core loss and inductance value) 19

2 x 2 Variable Inductor with Multi Leg Approach

Each inductor is individually controlled through its dedicated bias circuit.

Achieves 20% L Variation in 0.1 ms

- No special coordination between different array elements, they all receive the same bias command.
- Large signal data –
 no non-linearity observed.
- Limit is slew rate of current source .

Contributions and Conclusions

- 1. Presented plasma generation and modeling overview.
- Incorporated low permeability saturation control into established high permeability methods.
- 3. Outlined Design approach for creating low permeability variable reactors with DC bias control.
- 4. Shared small and large signal testing outcomes, including dynamic inductance change and core loss data, confirming inductor suitability for plasma emulation systems.
- 5. Experimentally validated a downscaled 2x2 inductor prototype.