

High-Performance High-Power Inductor Design for High-Frequency Applications

<u>Mansi Joisher¹</u>, Roderick Bayliss III², Mike Ranjram³, Rachel Yang¹, Alexander Jurkov⁴, David Perreault¹

¹Massachusetts Institute of Technology, ²University of California, Berkeley, ³Arizona State University, ⁴MKS Instruments, Inc.

Contact : mjoisher@mit.edu

Paper ID: 1567

High-Power Inductors

Air-core inductors dominate this application space due to the design challenges posed by copper and core losses in cored magnetics at HF

Air-core Inductors

Simple and easy to fabricate

Uncontrolled and unshielded fields lead to

- Electromagnetic Interference (EMI)
- Eddy current losses

Requires placement in a metal enclosure isolated from

other circuit component

Bottleneck for system miniaturization and efficiency

HF Cored Inductors

Need HF cored inductors that are efficient and provide self-shielding

500 nH 80 A_{nk} @ 13.56 MHz

Goal : Achieve high Q while ensuring minimal external magnetic field

Design guidelines

Modified pot core structure with an outer shield

Low-loss design techniques

Mitigating and modeling 3D effects

- Experimental verification
- Performance comparison to an air-core inductor

Goal : Achieve high Q while ensuring minimal external magnetic field

Goal : Achieve high Q while ensuring minimal external magnetic field

Low-loss design techniques

- 1. Field shaping
- 2. Quasi-distributed gaps

Goal : Achieve high Q while ensuring minimal external magnetic field

Low-loss design techniques

- 1. Field shaping
- 2. Quasi-distributed gaps

Current crowds due to imbalanced fields (single-sided conduction)

Goal : Achieve high Q while ensuring minimal external magnetic field

Goal : Achieve high Q while ensuring minimal external magnetic field

Image : C. Sullivan, PSMA, 2016, High frequency magnetics design overview and winding loss [PPT Slides] J. Hu and C. Sullivan, "The quasi-distributed gap technique for planar inductors: design guidelines," IAS, 1997

Quasi-distributed

Goal : Achieve high Q while ensuring minimal external magnetic field

Low-turn count \rightarrow 3D effects 80/ Phi-directed fields Core loss in outer shell B-field in Z-directed outer shell current Additional inductance Outer shell notches

Increases reluctance of phi-directed path

Outer shell notch

Goal : Achieve high Q while ensuring minimal external magnetic field

Low-turn count \rightarrow 3D effects

Phi-directed fields

- Core loss in outer shell
- Additional inductance

Outer shell notches

Increases reluctance of phi-directed path

Reduces **core loss** in outer shell

Goal : Achieve high Q while ensuring minimal external magnetic field

Low-turn count \rightarrow 3D effects

Phi-directed fields

- Core loss in outer shell
- Additional inductance

Outer shell notches

Increases reluctance of phi-directed path

Reduces **core loss** in outer shell

Goal : Achieve high Q while ensuring minimal external magnetic field

х

<u></u>α\4

Тор

Self-Shielded Inductor Prototype

Optimized for total loss for the given

design constraints

Design Constraints

Inductance	570 nH
Frequency	13.56 MHz
Peak Current	80 A
Power Rating	155 kVA
Volume	1.6 L
Material	Fair-Rite 67

103.8 mm

Q - Measurement Setup

Matching Network and transformer coupled resonant tank

Results

• Q- Measurement

Results

Self-Shielding Test Setup

High Q (1050, <10 % degradation) near a large metallic object (~25 mm)

Air-core Comparison

-			
	Air-core Inductor	Self-Shielded Inductor	
Inductance	585 nH	570 nH	
Large – signal Q measurement	750	1150	

Air-core Comparison

		5.25x Q 3.5x lower volume
	Air-core Inductor	Self-Shielded Inductor
Inductance	585 nH	570 nH
Large – signal Q measurement	750	1150
Shielding Q measurement	200	1050
Volume	5.57 L	1.6 L

Self-Shielded inductor provides improved combination of

efficiency and size

Achieves a high Q while ensuring minimal external magnetic field

Modified pot core structure with an outer shield

Low-loss design techniques	Inductance	570 nH		ר
Field shaping	Frequency	13.56 MHz	CONTRACTOR OF	
Quasi-distributed gaps	Peak Current	80 A	A	192 mm
	Power Rating	155 kVA		
Mitigating and modeling 3D effects	Quality factor	1050 (5.25x higher)		
Phi –directed fields	Volume	1.6 L (3.5x lower)]
End-turns effect				

Prototype

Enable improved efficiency and miniaturization of high-power HF applications

103.8 mm

References

- R. S. Bayliss, R. S. Yang, A. J. Hanson, C. R. Sullivan, and D. J. Perreault, "Design, implementation, and evaluation of high-efficiency high-power radio-frequency inductors," in APEC, 2021
- 2. R. S. Yang, A. J. Hanson, B. A. Reese, C. R. Sullivan, and D. J. Perreault, "A low-loss inductor structure and design guidelines for high-frequency applications," IEEE Transactions on Power Electronics, 2019
- 3. R. S. Yang, A. J. Hanson, C. R. Sullivan, and D. J. Perreault, "Design flexibility of a modular lowloss high-frequency inductor structure," IEEE Transactions on Power Electronics, 2021
- 4. J. Hu and C. Sullivan, "The quasi-distributed gap technique for planar inductors: design guidelines," in IAS , 1997