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Abstract—The range, efficiency, and size of resonant coils
in an inductive wireless charging system is determined by the
quality factor Q of the resonant coils. The multi-layer self-
resonant structure is a new resonant coil technology that has
been demonstrated to have a Q 6× larger than conventional
coils. However, to date, implementations of this structure have
been thick, which limits their practical applications. In this
paper, we explore the relationship between the thickness of a
self-resonant structure and its performance. A computationally
efficient 2-D optimization algorithm is proposed to design thin
resonant structures and illustrate the trade-offs in the design. A
new magnetic core shape is proposed which shapes the magnetic
field lines to be parallel to the conductive layers and reduces
current crowding. Finally, a prototype 3.5 mm thick self-resonant
structure is constructed, which has a measured quality factor
of 560 despite having a diameter of only 6.6 cm; this provides
a 3.03× improvement over the state-of-the-art wireless power
transfer coils in the literature.

I. INTRODUCTION

Resonant inductive wireless power transfer (WPT) provides
a convenient and safe method for powering and recharging
mobile electronic devices. The effectiveness of WPT is deter-
mined by the efficiency and range of the power transfer, which
are limited by the quality factor Q and magnetic coupling
factor k of the resonant coils. As the distance between resonant
coils increases, the magnetic coupling factor decreases, and
therefore increasing Q is essential for increasing the range and
efficiency of WPT [1]. Furthermore, in many mobile electronic
devices it is difficult to remove heat from the resonant coils,
which makes the Q of the coil an important parameter in order
to maintain safe operating temperatures.

The achievable quality factor of resonant coils depends
on the diameter of the coil [2]. So, a figure-of-merit Qd is
proposed in [1], which is the quality factor normalized by
diameter d. Conventional coils, made of solid or litz wire,
have a Qd ranging from from 3 to 28 cm−1 [3]–[8].

In the MHz frequency range, only a small portion of
solid wire can be utilized due to skin effect, and proximity
loss in litz wire at MHz frequencies is very high because
strand diameters are too large compared to the skin depth δ.
Thinner strands would reduce this loss, but are very difficult
to manufacture [9].

The self-resonant structure, described in detail in [1], [10],
overcomes many of the issues associated with conventional
resonant coils. It is an integrated LC resonator constructed
from alternating C-shaped thin conductive layers and washer-
shaped dielectric layers that are stacked into a magnetic core.

This structure can achieve a very high Q because it forces
equal current sharing between many thin layers, has no ter-
minations in the resonant current path, and orients conductive
materials parallel to the magnetic field. In [1], a prototype
of this structure was shown to have a quality factor of 1173
despite having a diameter of only 6.6 cm. The experimental
Qd of the prototype (177 cm−1) is more than six times that
of other coils presented in the literature, which demonstrates
the significant performance benefit this technology provides.

The prototype of the self-resonant structure developed in
[1] uses a thick magnetic pot core (16.2 mm), which provides
many performance benefits but also makes it difficult to inte-
grate in mobile electronic devices. First, the thick core shapes
the magnetic field lines to be parallel to the thin conductors,
which minimizes eddy current losses. Next, the effective area
of the magnetic core can be chosen to minimize core loss.
Finally, the thick core shape provides ample space for the
winding, which allows the number of layers to be chosen
based solely on minimizing winding loss, and allows the use
of relatively thick substrates to support the thin foil layer.
Although the thick substrates are useful for handling the thin
conductor layers, they do not contribute to the performance of
the structure and increase the total height of the structure [1].

In this paper, we analyze the relationship between the
height and Q of self-resonant structures (Section II), and
use this analysis to develop a methodology for designing
thin structures. In Section III, we present a 2-dimensional
optimization space which maximizes Q by allocating space
between winding, core, and air space. In Section IV, we
introduce a new magnetic core shape, called the modified
pot core, that shapes the magnetic field lines in a thin self-
resonant structure in order to reduce eddy currents. Finally,
in Section V, we use the optimization algorithm, and the
new modified pot core in the design of a thin self-resonant
structure. Experimental results show that the thin structure has
a Q of 560 and Qd of 84.8, which is 3.03× larger than the
current state-of-the-art coils despite having a thickness of only
3.5 mm.

II. THE CHALLENGE OF HIGH-Q AND THIN
SELF-RESONANT STRUCTURES

The self-resonant structure, which is introduced in [1], [10],
is a parallel resonator that is constructed from alternating C-
shaped thin conductive layers and washer-shaped dielectric
layers that are stacked into a magnetic core (see Fig. 1). A



Fig. 1: Self-resonant structure, shown with exaggerated layer thickness for
clarity. In practice, layer thicknesses is on the order of 10 µm and many
layers are used.

section is two C-shaped foil layers separated by a low-loss
dielectric (Fig. 1). The C-shaped conductors within a section
have opposite orientations, which results in two overlapping
areas and form two capacitors. As current flows through
a section it passes through both capacitors, and creates an
inductive current loop. This results in a parallel LC resonator
in which the inductance L is equivalent to a single turn around
the magnetic core and the capacitance is the series combination
of two section-half capacitances Csh [10]. This section-half
capacitance can be expressed in terms of the angle of overlap
of the layers in radians θ, the inner radius of the coil r1, the
outer radius r2, the permittivity of the dielectric εd, and the
dielectric thickness td

Csh = εd
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θ

2π

)(
π
(
r2
2 − r2

1

)
td

)
=
εdθ(r

2
2 − r2

1)

2td
. (1)

The self-resonant structure is constructed from many sec-
tions that are separated from each other by a low-loss dielectric
layer. Excluding the first layer, each section is inductively
coupled so there are no terminations in the resonating high-
current path. The strong coupling effectively puts all of the
sections in parallel. Each section-half has a capacitance Csh,
and there is additional capacitance between a section and
the layers above and below it. Therefore, a structure with m
sections has an equivalent capacitance Cequiv of

Cequiv = mCsh, (2)

and a resonant frequency

ω0 =
1√

LCequiv
. (3)

The Q of a self-resonant structure is

Q =
ω0L

Rtotal
, (4)

where ω0 is the angular resonant frequency and Rtotal is
the equivalent series resistance of the resonant current path;
therefore, the impact of structure height hs on Q can be
understood by investigating the impact of structure height on
Rtotal. As shown in Fig. 2, the total height of a self resonant
structure hs limits the space that can be allocated to the height
of the winding hw, the height of the back-plate of the magnetic
core hbp, and the height of the air gap between the top of

hgap

hw

hbp

wgap hs

Fig. 2: An axisymmetric diagram of a self resonant structure. This diagram is
not to scale, but enlarged in order to clearly define: the winding height hw ,
the magnetic core back-plate height hbp, and the total height of the structure
hs.

the winding and the top of the magnetic core hgap. Limiting
these parameters impacts the loss models, developed in [1],
[10], which describe Rtotal as the sum of 3 equivalent series
resistances (ESR) that model winding loss Rwind, core loss
Rcore, and dielectric loss Rdieletric.

A. Impact of Thin Structures on Dielectric Loss

The ESR that models dielectric loss Rdieletric is indepen-
dent of structure thickness, and is

Rdieletric =
Dd

Cequivω0
, (5)

where Dd is the dissipation factor of the dielectric material,
and Cequiv is the equivalent capacitance of the structure.
Substituting (5) into (4) yields

Q =
1

Dd + (Rcore +Rwinding)ω0Cequiv
. (6)

This shows the dielectric loss is independent of structure
thickness: the the effect of Dd on Q is independent of structure
parameters L and Cequiv .

B. Impact of Thin Structures on Winding Loss

The ESR that models winding loss Rwind increases as the
height of the structure decreases. Rwind is modeled in [1], [10]
in terms of the thickness of the foil layers tc, the coil inner
radius r1 and outer radius r2 of the winding, the resitivity of
the conductor ρ, the current crowding factor Fcc, and the field
weakening factor Ffw as

Rwind ≈ 2πρ

ln( r2
r1
)tcm

[
k1Fcc +

Ffwm
2

9

(
tc
δ

)4

k2

]
, (7)

where
k1 = 1− θ

3π
and k2 = 1 +

θ

π
. (8)

The ESR that models winding resistance is impacted by struc-
ture height for two reasons. First, the height of the structure
limits the height of the winding hw, and restricts the possible
winding designs. If hs is large, then a large number of sections
constructed from conductors much thinner than the skin depth
(tc << δ) can be used to minimize (7) without a constraint on
the available winding height. However, in the design of thin
structures, the height of the winding is limited, which reduces
the design space and potentially increases Rwind.



(a) 10 mm Pot Core (b) 3 mm Pot Core (c) 3 mm Modified Pot Core

Fig. 3: An axissymmetric finite element analysis is used to show the magnetic field lines on 3 pot cores filled with 10 sections. Each pot core has an hbp of
1.25 mm but in (a) hs is 10 mm and in (b) and (c) hs is 3 mm. In (a) the field lines are relatively parallel to the windings due to the height of the core, but
with a shorter pot core in (b) it is clear that the field lines are no longer parallel to the foil, and are therefore causing additional eddy currents. To overcome
this issue, in Section IV we propose the modified pot core, shown in (c), that straightens the field lines around the winding despite the thin pot core.

Second, the distance between the top of the winding and
the top of the magnetic core hgap has a significant impact on
the winding loss, and this space is limited in a thin structure.
In Fig. 3a, the large hgap ensures that the magnetic field
lines are mostly parallel to the foil layers, so eddy current
losses are small due to the thin layers. In Fig. 3b, hgap is
small and the magnetic field lines are not parallel to the
thin conductive layers, which causes eddy currents that result
in current crowding near the edge of the conductors and
increased winding loss. Therefore, hgap impacts the Q. This
phenomenon is captured in (7) by Fcc, which is a factor that
describes the impact of horizontal current crowding on Rwind.

C. Impact of Thin Structures on Core Loss
The ESR that models core loss Rcore increases as the

structure height decreases. For a given core material with a
relative permeability of µ′ − jµ′′, Rcore is

Rcore =
ω0

(
`eh
µ0Ae

)
µ′′((

`eh
µ0Ae

)
+ Raµ′

)2

+ (Raµ′′)
2
, (9)

where `eh, Ae,and Ra are the effective length of the pot core
half, the effective area of the core, and the reluctance of the
air respectively [1]. In a thin structure, the height of the back-
plate of the magnetic pot core hbp is limited, which decreases
the effective core area Ae. At the same time, the effective
magnetic length of the pot core half is decreased; however, the
reduction in the effective core length is small in comparison
to the reduction in effective core area. Therefore, reducing the
height of the structure hs increases (9).

III. HEIGHT-CONSTRAINED OPTIMIZATION

The performance of a thin self-resonant structure with a
specified height can be optimized by allocating the available
height among hbp, hw and hgap to maximize Q · k. However,
because the effect of these parameters on the quality factor Q
is much more significant than that on the magnetic coupling
factor k, it is sufficient to optimize Q instead. Q is optimized
by minimizing the sum of the winding loss, core loss and
dielectric loss.

The winding loss model, discussed in Section II-B, has two
factors Fcc and Ffw that model the effects of current crowding

and field weakening respectively. Due to the complexities of
modeling magnetic fields, these factors are computed using
finite element analysis (FEA) [1]. In previous self-resonant
structure designs hgap was relatively large, and therefore Fcc
and Ffw were not included in the design process as they did
not significantly contribute to the overall loss. However, for the
design of thin structures these factors must be considered. The
FEA required to compute Fcc and Ffw is slow, which makes
optimizing the multi-dimensional parameter space challenging.

We present a computationally efficient algorithm, described
in Table I, which optimizes the Q of a self-resonant structure
while considering Fcc and Ffw. This algorithm is compu-
tationally efficient because it reduces a multi-dimensional
optimization into 2-dimensions. The design variables are the
number of sections m, closely related to hw, and the height
of the magnetic core back-plate hbp. The total height of
the structure hs and the desired resonant frequency ω0 are
constrained.

The algorithm first estimates the inductance of the structure
(step 1 in Table I). The exact inductance is unknown until
the optimal values of hbp, hw and hgap are selected. Thus,
as an initial guess for step 1, the inductance of the struc-
ture is estimated using magnetostatic finite element analysis
(FEA) simulation assuming that hbp, hw and hgap are each
approximately one third of hs. Because the inductance of the
structure is dominated by the reluctance path in the air, this
approximation does not significantly impact the optimization
results. In a practical design, there is some space between the
bottom of the winding and the top of the core backplate due
to the presence of the first layer, which is thick compared to
the skin depth.

The estimated inductance is then used to calculate the
losses in the structure for various combinations of m and
hbp (steps 2–6). The structure height constraint limits the
possible combinations of m and hbp that need to be considered
since there exists a maximum number of sections m that
can fit inside of the pot core for a particular value of hbp.
For each {m, hbp} combination, the algorithm computes the
estimated Q from the loss models in [1], [10]. First, the



TABLE I: Computationally efficient algorithm to produce a design-space for
a thin self-resonant structure.

Description of Algorithm Steps Tool/Equation

1) Estimate L Magnetostatic FEA

2) Select
{
m, hbp

}
design space None

For each
{
m, hbp

}
combination, do (3–6)

3) Estimate dielectric thickness td =
ε0k(r

2
2−r

2
1)θmLω

2
0

2π

4) Estimate conductor thickness tc = 30.25δ√
m

(
k1
k2

) 1
4

5) Simulate lateral current crowding FEA procedure in [1]

6) Calculate Q Q = ω0L
Rtotal

7) Find
{
m, hbp

}
for optimum Q. None

For the optimal
{
m, hbp

}
combination, do (8–12)

8) Calculate tc considering Fcc and Ffw tc = 30.25δ√
m

(
k1Fcc
k2Ffw

) 1
4

9) Calculate L with updated hw and hbp Magnetostatic FEA

10) Update dielectric thickness td =
ε0k(r

2
2−r

2
1)θmLω

2
0

2π

11) Simulate lateral current crowding FEA procedure in [1]

12) Unless tc has converged go to step 8 None

required dielectric thickness is

td =
ε0k(r2

2 − r2
1)θmLω2

0

2π
, (10)

which is computed from (1), (2), and (3). The optimal
conductor thickness, assuming no current crowding or field
weakening, for a given number of sections is derived in [10],
and is

tc =
30.25δ√
m

(
k1

k2

) 1
4

. (11)

Using the conductor thickness and dielectric thickness, a
procedure, presented in [1], is used to compute Fcc and Ffw.
Finally, Q is computed from L, (5), (7), and (9). The optimal
{m, hbp} combination that minimizes the total loss, hence
maximizes Q, is then selected (step 7).

Once the optimal {m, hbp} combination is selected, an
iterative process is used to find more precise solutions for the
dielectric thickness and the optimal conductor thickness (steps
8–12). The dielectric thickness is dependent on the inductance
of the structure. A more accurate estimate of the structure’s
inductance is calculated using FEA based on the winding
area and core shape obtained from the optimal {m, hbp}
combination. The optimal conductor thickness is dependent
on lateral current crowding, so the conductor thickness is also
reevaluated. The optimal conductor thickness including current
crowding and field weakening tc,opt is derived by minimizing
the AC resistance factor Fr

Fr =
k1Fcc
mtc

+
m

9
· t

3
c

δ4
k2Ffw (12)

Fig. 4: A self-resonant structure in a modified pot core is shown. A few
layers of the winding are expanded on the right to show the orientation of
the conductive layers.

wring hring

hgap

hw

hbp

wgap hs

Fig. 5: A diagram of the modified pot core shape that is axissymmetric around
the dotted line. This diagram is not to scale, but enlarged in order to clearly
define: the winding height hw , the magnetic core back-plate height hbp, the
width of the ring wring , the height of the ring hring , and the total height of
the strucutre hs.

with respect to the conductor thickness, and is

tc,opt = 30.25 δ√
m

(
k1Fcc
k2Ffw

)0.25

. (13)

This process of calculating td and tc,opt and performing FEA
simulation to obtain Fcc and Ffw can be repeated in order to
converge to a more precise solution. An example design space
is shown in Fig. 6.

IV. MODIFIED POT CORE

In very thin structures with an ordinary pot core, lateral
current crowding causes the winding loss to be much larger
than in a deeper structure, even though it’s still small compared
to that of a conventional coil. To help overcome this, we
propose a new core shape called the modified pot core. The
modified pot core has two rings of magnetic core material that
overhang the winding, as shown in Fig. 4. These additional
rings of magnetic core material shape the magnetic field so
that it is more parallel to the conductors, as can be seen by
comparing Figs. 3b and 3c, and the more parallel magnetic
field lines reduce lateral current crowding.

The width of the ring wring and the height of the ring hring
(shown in Fig. 5) are important design parameters. Increasing
the width of the ring until wring

wgap
≈ 1.5 helps shape the

magnetic field and increases the Q of the resonant structure,
but it also slightly increases the leakage inductance, which
slightly decreases the k. In general, wring should be about as
large as the distance between the edge of the winding and the



edge of the pot core wgap. The height of the ring impacts the
available space for the winding, and therefore should be just
large enough to be easily manufactured. The modified pot core
provides up to a 1.46× increase in quality factor compared to
the conventional pot core for the example shown in Section V.

V. RESULTS

This section applies the tools discussed in
Sections III and IV to the design of self-resonant structures
with a resonant frequency of 6.78 MHz. The structures use a
pot core made from Fair-Rite 67 Ni-Zn ferrite with an outer
diameter of 6.6 cm, which can fit a winding with an outer
radius r2 of 26.75 mm and an inner radius r1 of 14.6 mm.
The conductive layers are copper, and the dieletric layers
are PTFE (Teflon). A gap of 125 µm is included between
the bottom of the winding and the top of the core in order
to leave space for the drive layer of the resonant structure.
Further details about the structure are cataloged in Table II.
The modeled performance of the self-resonant structures is
compared to the modeled performance of a reference design.
The reference design is a single-turn, single-layer copper
winding thicker than a skin-depth with r2 = 26.75 mm
and r1 = 14.6 mm, placed in the same 6.6 cm pot core.
This winding is connected to a low-loss capacitor with a
dissipation factor of 5 × 10−4. This dissipation factor was
chosen to model the losses of an extremely high-Q capacitor,
ATC800E series, at 6.78 MHz.

A. Optimizing Thin Resonant Structures

1) Typical Pot Core: The algorithm in Section III was used
to create a contour plot, shown in Fig. 6, which illustrates the
impact of the design parameters {m, hbp} on the Q of a 3.5
mm tall structure. The shape of Fig. 6 provides quantitative
evidence regarding the design trade-offs described in Section
II. For example, if too many sections are used (m > 12),
the Q of the structure decreases either because winding loss
increases due to hgap being small or core loss increases due
to hbp being small. The maximum Q is Qmax = 511, and is
found by optimizing {m, hbp} to minimize loss.

2) Modified Pot Core: A contour plot demonstrating the
relationship between {m, hbp} and Q is also shown for the
self-resonant structure in a modified pot core. The total height
of the structure is constrained to 3.5 mm, and the height of
the ring hring is 500 µm. The optimal wring is determined by
considering Q and Q · k as a function of wring

wgap
. In Fig. 7, the

Q · k and Q of a 3.5 mm self-resonant structure in a modified
pot core are shown as a function of wring

wgap
. For this example,

using the modified pot core in place of the conventional pot
core can increase the Q of the self-resonant structure from
494 to 718 (∼ 1.45× improvement). Thus, the benefit of the
self-resonant structure relative to the reference design can be
larger if the modified pot-core is used. Although the wring

wgap

that maximizes Q in Fig. 7 is approximately 2, inserting a
winding into a core with wring

wgap
> 1 is challenging because

the winding is larger than the core opening. Therefore, the
modified pot core is assumed to have wring

wgap
= 1.
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Fig. 6: The quality factor is plotted as a function of the number of sections m
and the back-plate height hbp for a 6.78 MHz self-resonant structure with a
3.5 mm high pot core. The blue diamond marks the maximum calculated
Q, which is Qmax = 511. The red shaded area represents

{
m, hbp

}
combinations in which the winding does not fit inside of the pot core.
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Fig. 7: Finite element analysis of a 3.5 mm modified pot core structure is
used to plot the Q and FoM Q · k for varying ring widths wring normalized
to the winding gap wgap. The magnetic coupling is computed using FEA of
two structures separated by 66 mm.

The impact of {m, hbp} on Q for the self-resonant structure
with a 3.5 mm high modified pot core with hring = 0.5 mm
and wring

wgap
= 1 is shown in Fig. 8. In this figure, designs that

have a winding that is larger than the available winding space
(hw > hs−hbp) are shaded in red. Designs that maximize the
Q fully utilize the winding space, and therefore are adjacent
to the red shaded area.

The contour plots for the two core shapes are qualitatively
different. For the conventional pot core, there exists an optimal
number of sections for each back-plate height as adding more
sections reduces the gap between the top of the core and the
top of the winding, which causes magnetic field lines to be
less parallel to the conductor layers. The modified pot core
significantly reduces the effect of this gap, and the optimal
design for each back-plate height uses the maximum number
of sections that can fit inside of the modified pot core such



396

429

429

462

462

462

495

495

495
495

528

528

528

560

560

560

593

593

593

626626

626
626

Qmax = 642

2 4 6 8 10 12 14 16 18 20 22 24

Number of Sections

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
H

ei
gh

t o
f B

ac
kp

la
te

 (
m

m
)

Fig. 8: The quality factor is plotted as a function of the number of sections
m and the back-plate height hbp for a 6.78 MHz self-resonant structure with
a 3.5 mm high modified pot core with hring = 0.5 mm and wring

wgap
= 1.

In order to account for the thickness of the bottom driving layer, a gap of
0.125 mm between the bottom of the winding and the magnetic core back-
plate is assumed in the simulation. The red shaded area represents

{
m, hbp

}
combinations in which the winding does not fit inside of the modified pot
core. The blue diamond indicates the

{
m, hbp

}
that achieves Qmax = 642,

and the blue circle indicates the design used in the experimental setup, which
has an expected Q of 605.

that the top of the winding touches the bottom of the ring of
the modified pot core.

3) Q vs. Structure Height: Contour plots are created for
various structure heights hs ranging from 2 mm to 6 mm
to find the optimal {m, hbp} that maximizes Q for each hs.
Fig. 9 shows the maximum quality factor Qmax as a function
of the total structure height hs for both the self-resonant
structure and the self-resonant structure in a modified pot core.
For comparison, the maximum Q theoretically achievable with
a single-layer reference design is also included in Fig. 9. The
self-resonant structure outperforms the reference design over
the plotted range. Even with small structure heights, where
the benefit is smaller, the resonant structure has a substantial
advantage, especially with the modified pot core. Using the
modified pot core, the self-resonant structure has a Qmax
1.90× larger than the reference design at 6 mm, and 1.52× at
2 mm. Furthermore, the self resonant structure in a modified
pot core has a Q 1.30× larger than the self-resonant structure
in a typical pot core at 2 mm.

B. Experimental Validation

In order to experimentally validate the results in Fig. 9,
we built a self-resonant structure optimized for hs = 3.5 mm,
adjusting the optimal number of sections from 12 to 8 to make
building the coil by hand feasible. The expected Q of this
structure was 605.

The low loss dielectric layers were created from 12.5 µm
PTFE film cut into ring shapes with a die cutter. The optimal
conductor thickness was found to be 12.1 µm, so the conduc-
tive layers were created from 12.5 µm thick copper foil cut
into C-shapes with a die cutter. Substrate layers were used
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Fig. 9: This figure illustrates the impact of structure height on the Qmax of
the self-resonant structure, self-resonant structure in a modified pot core, and
the reference design.

TABLE II: Thin 3.5 mm self-resonant coil variables and values in the
experimental setup.

Parameter Description Value
fo Desired resonant frequency 6.78 MHz
tc Conductor thickness 12.5 µm

td Dielectric thickness 12.5 µm

k Dielectric constant 2.2
Df Dissipation factor 3 × 10−4

m Number of sections 8
θ Overlap angle ∼ 175◦

r2 Conductor outer radius 26.75 mm
r1 Conductor inner radius 14.6 mm

wgap Conductor inner radius 0.5 mm

δ Skin Depth 25 µm

ρ Conductor resistivity 16.8 nΩ-m
µ′ Core permeability 40 µ0
µ′′ Imaginary permeability 0.7 µ0

to support the thin layers in [1], which added to the overall
winding height. In order to reduce the winding height, we
developed a working prototype without any substrate layers.
We eliminated wrinkling from handling and cutting the copper
layers by pressing them in a vice between two 1 cm thick
polypropylene blocks. The resonant coil was built into the
modified pot core, as shown in Fig. 10.

Experimental results were obtained by testing the coil in
the 3.5 mm modified pot core. The Q of the structure was
obtained by measuring the structure’s impedance as a function
of frequency using an Agilent 4294A impedance analyzer. The
resonant frequency f0 was divided by the -3dB bandwidth
∆f3dB to give Q = fo

∆f3dB
. The measured Q of the modified

structure was 560, giving a Qd of 84.8. There was 7.4%
error between our predicted and experimental results. This
demonstrates the accuracy of our modeling and the high
performance of the modified structure.



Fig. 10: The modified structure consists of the self-resonant coil built into the
3.5 mm tall modified pot core.
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Fig. 11: Measured impedance of the self-resonant structure as described in
Table II. The quality factor of the resonance is calculated from the resonance
frequency and the -3 dB bandwidth.

C. Impact on Wireless Power Transfer

The high-Q of the experimental self-resonant structure in a
modified pot core allows for high efficiency and longer range
WPT. The maximum achievable WPT efficiency as a function
of Q and k is

ηmax =
(Qk)

2(
1 +

√
1 + (Qk)

2

)2 . (14)

The expected ηmax for both our experimental self-resonant
structure and the current state of the art is shown in Fig. 12.
The ηmax of our experimental self-resonant structure is based
on the experimental Q of 560 and the k of the modified pot
core is calculated using FEA. The ηmax of the state-of-the art
is based on the expected Qsoa of a 6.6 cm state-of-the-art coil,
which is Qsoa = Qd ·d = 184.4, and k is estimated using FEA
of a typical 3.5 mm thick pot core with a diameter of 6.6 cm.

The experimental self-resonant structure significantly out-
performed the state-of-the-art design. It was able to achieve
above 90% efficiency over a range of 48.5 mm, which is a
56% increase over that of the state-of-the-art. Furthermore, at
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Fig. 12: Maximum wireless power transfer efficiency as a function of the
wireless range. The ηmax of our experimental self-resonant structure is based
on the experimental Q of 560 and a simulated k, which is computed using
FEA of a 3.5 mm modified pot core. The ηmax of the state-of-the art is based
on the expected Qsoa of 184, and a simulated k, which is estimated using
FEA of a typical 3.5 mm thick pot core.

TABLE III: The FoM, described in [11], is calculated for a sample of WPT
systems utilizing various resonant coil technologies in the literature and are
catalogued below.

Citation Frequency Coil Technology Max FoM
[7] 7.65 MHz Solid wire coil 0.11
[12] 15.9 MHz Solid wire coil 0.61
[6] 10.6 MHz Solid wire coil 0.97
[8] 3.7 MHz Surface spiral coil 0.34
[13] 50 kHz Litz wire coil 0.52

This Work 6.78 MHz Self-Resonant Structure 3.38

60 mm the self-resonant structure has 2.5× lower loss.
A figure of merit for resonant wireless power transfer

FoM is described in [11], and can be used to describe the
relative performance of a WPT systems. Using ηmax, the
FoM is computed and plotted in Fig. 13 for our experimental
structure and systems from the literature, which are described
in Table III. The other reported systems are not designed to
be thin, so this plot compares the performance of our structure
against coils that could be much thicker.

The self-resonant structure significantly outperforms other
systems in the literature when the range/diameter is x

d < 1.25.
The maximum FoM is 3.38, which is ∼ 6× larger than other
systems that report data for x

d < 1.25, despite being only
3.5 mm thick. As the range increases (i.e. x

d > 1.25), the
FoM of our structure approaches that of [6]. The resonant
coil presented in [6] does not have a magnetic core, so the
magnetic coupling factor is relatively large at long range.

VI. CONCLUSIONS AND FUTURE WORK

Many wireless power transfer application require very thin
yet high-Q resonant coils. In this work, we explore the
relationship between the Q of self-resonant structures and their
thickness. We propose a computationally efficient algorithm
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Fig. 13: Figure of merit, described in [11], as a function of range
diameter

is
shown for our thin self-resonant structure in a modified pot core and a few
examples from the literature.

for computing a 2-dimensional design space for thin high-Q
self-resonant structures and introduces a new core shape which
drastically reduces winding loss in thin structures. Simulation
results show that the self-resonant structure can achieve a Q
more than 1.5× larger than a single layer design for structures
that thicker than 2 mm. An experimental implementation
of 3.5 mm thick self-resonant structure in a modified pot
core validates our simulation results, and demonstrates that
thin self-resonant structures can achieve high Q. This work
highlights how self-resonant structure can be used to increase
the range and efficiency of WPT in applications which limit
the available thickness.

Future work on self-resonant structures will consider mag-
netic coupling k as part of the structure optimization, in order
to further extend the range of wireless power transfer.
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