

EMI Suppression Beads (2673200201)

Part Number: 2673200201

73 SHIELD BEAD

Explanation of Part Numbers:

- Digits 1 & 2 = Product Class
- Digits 3 & 4 = Material Grade
- Last digit 1= Not Burnished 2 = Burnished

– The last digit of the Parylene coated part is a "4," which is available upon request. The minimum coating thickness beads is 0.005 mm (0.0002").

Fair-Rite offers a broad selection of ferrite EMI suppression beads with guaranteed minimum impedance specifications.

Our "Shield Bead Kit" (part number 0199000019) contains a selection of these beads.

For any EMI suppression bead requirement not listed here, feel free to contact our customer service for availability and pricing.

Catalog Drawing 3D Model

The C dimension, the bead length, can be modified to suit specific applications.

<u>Weight:</u> 1.6 (g)

Dim	mm	mm tol	nominal inch	inch misc.		1 22		
А	5.2	±0.15	0.205	_	\bigcirc	<u>. </u>	///////////////////////////////////////	
В	2.65	±0.25	0.104	_	U -	в		
С	20.6	±0.75	0.811	_	\leftarrow	T E		
				-	- A -	-		

Chart Legend

+ Test frequency

• The column "H (Oe)" gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of "H" times the actual

NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note []How to choose Ferrite Components for EMI Suppression[].

Typical Impedance (Ω)						
1 MHz	56					
5 MHz	131					
10 MHz^+	166					
25 MHz^+	141					
Electrical Properties						
H(Oe)	1.1					

Suppression beads are controlled for impedances only. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.

Catalog Drawing

Single turn impedance tests for 73 and 43 material beads are performed on the E4990A Impedance Analyzer. The 61 material beads are tested on the E4991A / HP4291B Impedance Analyzer. Beads are tested with the shortest practical wire length.

Typical Impendance (Ω)					
1 MHz	37				
5 MHz	89				
10 MHz^+	110				
25 MHz ⁺	113				

