

EMI Suppression Beads (2643250202)

Part Number: 2643250202

43 SHIELD BEAD

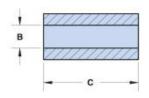
Explanation of Part Numbers:

- Digits 1&2 = product class,
- -3&4 = material grade and
- last digit 1= not burnished, 2 = burnished and 4 = Parylene coated.
- Beads with a "1" as the last digit of the part number are not burnished. Parts that are burnished to break the sharp edges have a "2" as the last digit.
- Upon request beads can be supplied with a Parylene coating. The last digit of the Parylene coated part is a "4". The minimum coating thickness beads is 0.005 mm (0.0002").

Fair-Rite offers a broad selection of ferrite EMI suppression beads with guaranteed minimum impedance specifications.

Our "Shield Bead Kit" (part number 0199000019) contains a selection of these beads.

For any EMI suppression bead requirement not listed here, feel free to contact our customer service for availability and pricing.


Catalog Drawing 3D Model

The C dimension, the bead length, can be modified to suit specific applications.

Weight: 2.5 (g)

Dim	mm	mm tol	nominal inch	inch misc.
A	6.35	±0.15	0.25	
В	2.95	+0.45	0.125	
С	25.4	±0.75	1	_

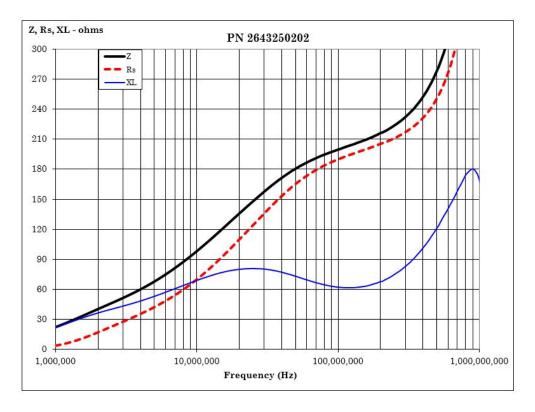
Chart Legend

+ Test frequency

• The column "H (Oe)" gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of "H" times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note \sqcap How to choose Ferrite Components for EMI Suppression \sqcap .

Typical Imped	ypical Impedance (Ω)				
10 MHz	98				
25 MHz ⁺	148				
100 MHz ⁺	200				
250 MHz	223				

Electrical Properties				
H(Oe)	0.91			


The column "H (Oe)" gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of "H" times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

Suppression beads are controlled for impedances only. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.

Catalog Drawing

Single turn impedance tests for 73 and 43 material® beads are performed on the E4990A Impedance Analyzer. The 61 material beads are tested on the E4991A / HP4291B Impedance Analyzer. Beads are tested with the shortest practical wire length.

Typical Impendance (Ω)				
10 MHz	83			
25 MHz ⁺	135			
100 MHz ⁺	200			
250 MHz	196			

CSV Download

Fair-Rite Products Corp. • One Commercial Row, Wallkill, New York 12589-0288
888-324-7748 • 845-895-2055 • Fax: 845-895-2629 • ferrites@fair-rite.com • www.fair-rite.com