

Multi-Aperture cores (2843001802)

Part Number: 2843001802

43 MULTI-APERTURE CORE

Explanation of Part Numbers:

- Digits 1 & 2 = Product Class
- Digits 3 & 4 = Material Grade
- Last digit 2 = Burnished

Multi-aperture cores are used in suppression applications and in balun (balance-unbalance) and other broadband transformers. They are also employed in airbag designs to prevent accidental activation.

All multi-aperture cores are supplied burnished.

Our "Multi-Aperture Core Kit" (part number 0199000036) is available for prototype evaluation.

For any multi-aperture requirement not listed here, feel free to contact our customer service group for availability and pricing.

Catalog Drawing
3D Model

Weight: 0.8 (g)

Dim	mm	mm tol	nominal inch	inch misc.
A	6.40	±0.30	0.252	_
В	6.15	±0.25	0.242	_
Е	2.75	±0.20	0.108	_
Н	1.1	+0.30	0.043	_

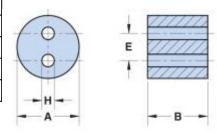
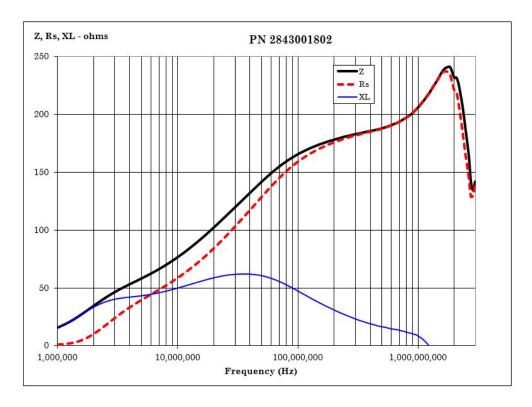


Figure 2

Chart Legend

+ Test frequency


Typical Impedance (Ω)				
25 MHz	112			
100 MHz ⁺	166			

Multi-aperture cores in 73 and 43 materials are controlled for impedance only. The 61 NiZn material is controlled for both impedance and A_L value. The high frequency 67 material is controlled for A_L value. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.

Catalog Drawing

Multi-aperture cores in 73 and 43 material are measured for impedance on the E4990A Impedance Analyzer. The 61 and 67 multi-aperture cores are tested on the E4991A / HP4291B Impedance Analyzer. All impedance measurements are performed with a single turn to both holes, using the shortest practical wire length.

The 61 and 67 material multi-hole beads are tested for A_L value. The test frequency is 10 kHz at < 10 gauss. The test winding is five turns wound through both holes.

CSV Download