

Chip Beads (2512061027Y1)

Part Number: 2512061027Y1

MULTI-LAYER CHIP BEAD

×

Fair-Rite offers a broad selection of cost effective multi-layer chip beads to suppress conducted EMI signals. Chip beads can be used in an array of devices such as cellular phones, computers, laptops, pagers, etc. The small package sizes accommodate automated placements and allow for a dense packaging of circuit boards.

Chip Beads are available in standard, high and GHz signal speeds.

Recommended Soldering Profile

Packaging Options:

-All multi-layer chip beads are supplied taped and reeled, if required bulk packed chip beads can be provided.

The suggested land patterns are in accordance to the latest revision of IPC-7351.

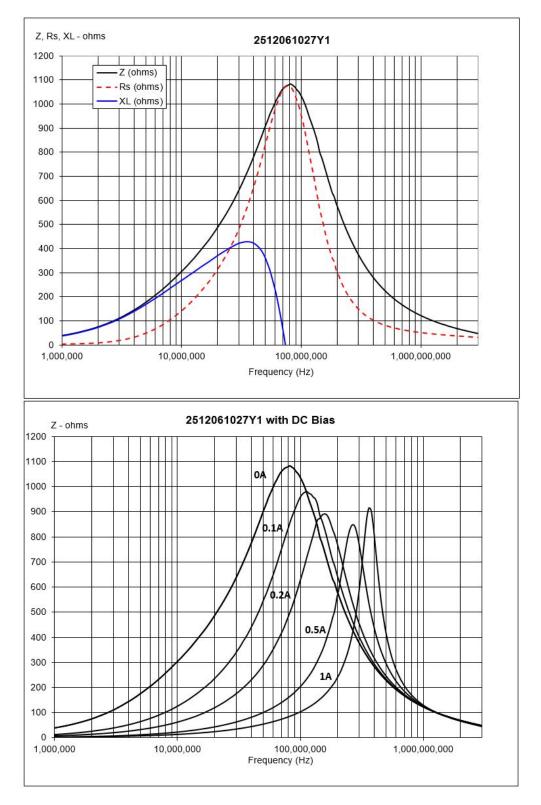
<u>Weight:</u> 0.03 (g)

Package Size: 1206 (3216)

I	Dim	mm	mm tol	nominal inch	inch misc.	Reel Infor	mation			
I	ł	1.1	±0.20	0.043	_	 Таре	Pitch	Parts 7"	Parts 13"	Parts
F	3	1.6	±0.20	0.063	_	Width				14" Reel
0		3.2	±0.20	0.126	_	mm			10000	
I)	0.7	±0.30	0.028		8	4	3000	10000	

$\begin{bmatrix} 1.20 \\ (0.047") \end{bmatrix} \begin{bmatrix} 2.80 \\ (0.110") \end{bmatrix} \begin{bmatrix} 1.60 \\ (0.071") \end{bmatrix} \begin{bmatrix} 1.60 \\ (0.063") \end{bmatrix} = \begin{bmatrix} 1.$	Land Patte	erns										Land F	atterns			Reel In	formation	
$\begin{bmatrix} 1.20 \\ (0.047") \end{bmatrix} \begin{bmatrix} 2.80 \\ (0.110") \end{bmatrix} \begin{bmatrix} 1.80 \\ (0.071") \end{bmatrix} \begin{bmatrix} 1.60 \\ (0.063") \end{bmatrix} = \begin{bmatrix} 1.$	V	W	Х	Y	Z	1(1008	0.020	0.020	0.040	0.010	02 0.40	(ref) 1.30 5 0.051	× 0.70 0.028	0.90 0.035	Tape Width mm	Pitch		Parts 13* Reel
(0.047'') (0.110'') (0.071'') (0.063'') - + - - - - - - - -	1.20	2.80	1.80	1.60							0.02	0.067	0.039	0.043	8	4	-	10000
					_						13 0.04	7 0.110	0.071	0.063	8 12	4		10000

Chart Legend


+ Test frequency

Typical Impedance (Ω)							
50 MHz	910						
100 MHz^+	1000 ±25%						
500 MHz	220						
1000 MHz^+	-						
Electrical Properties							
Max DCR (Ω)	0.3						
Max Currer (mA)	^{nt} 1000						

The impedance values listed are typical values. The nominal impedance with a +/- 25% tolerance is specified for the + marked 100 MHz. Chip beads are measured for impedance on the HP 4291A and fixture HP 16192A.

Chip beads are 100% tested for impedance and dc resistance.

Typical Impendance (Ω)								
50 MHz	925							
100 MHz^+	1000 ±25%							
500 MHz	210							
1000 MHz^+	-							

CSV Download