# 后 Fair-Rite Products Corp. 

Part Number: 2518131018Y8
MULTI-LAYER CHIP BEAD
®

Fair-Rite offers a broad selection of cost effective multi-layer chip beads to suppress conducted EMI signals. Chip beads can be used in an array of devices such as cellular phones, computers, laptops, pagers, etc. The small package sizes accommodate automated placements and allow for a dense packaging of circuit boards.

Chip Beads are available in standard, high and GHz signal speeds.

## Recommended Soldering Profile

## Packaging Options:

-All multi-layer chip beads are supplied taped and reeled, if required bulk packed chip beads can be provided.

The suggested land patterns are in accordance to the latest revision of IPC-7351.

|  | component dimensions * |  |  |  | Wt (g) | Land Patterns ** |  |  |  |  | Pitch | rts/ | arts/ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Metric Size) | A | B | C | D |  | V | W(ref) | X | Y | (mm) | (mm) | 7" Reel | 13" Reel |
| $\begin{gathered} 0402 \\ (1005) \end{gathered}$ | $\begin{gathered} 0.5 \pm 0.05 \\ 0.020 \\ \hline \end{gathered}$ | $\begin{gathered} 0.5 \pm 0.05 \\ 0.020 \\ \hline \end{gathered}$ | $\begin{gathered} 1.0 \pm 0.05 \\ 0.040 \end{gathered}$ | $\begin{gathered} 0.25 \pm 0.15 \\ 0.010 \\ \hline \end{gathered}$ | 0.002 | $\begin{gathered} 0.40 \\ 0.016 \end{gathered}$ | $\begin{aligned} & 1.30 \\ & 0.051 \end{aligned}$ | $\begin{gathered} 0.70 \\ 0.028 \end{gathered}$ | $\begin{gathered} 0.90 \\ 0.035 \end{gathered}$ | 8 | 4 | 10000 | - |
| $\begin{gathered} 0603 \\ (1608) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0.8 \pm 0.15 \\ 0.031 \\ \hline \end{gathered}$ | $\begin{gathered} 0.8 \pm 0.15 \\ 0.031 \end{gathered}$ | $\begin{gathered} 1.6 \pm 0.15 \\ 0.063 \end{gathered}$ | $\begin{gathered} \hline 0.4 \pm 0.2 \\ 0.016 \end{gathered}$ | 0.006 | $\begin{gathered} 0.60 \\ 0.024 \end{gathered}$ | $\begin{gathered} \hline 1.70 \\ 0.067 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 1.00 \\ & 0.039 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 0.043 \end{aligned}$ | 8 | 4 | 4000 | 10000 |
| $\begin{gathered} 0805 \\ (2012) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0.9 \pm 0.2 \\ 0.035 \end{gathered}$ | $\begin{gathered} 1.25 \pm 0.2 \\ 0.049 \end{gathered}$ | $\begin{gathered} 2.0 \pm 0.2 \\ 0.079 \end{gathered}$ | $\begin{gathered} \hline 0.5 \pm 0.3 \\ 0.020 \end{gathered}$ | 0.01 | $\begin{gathered} 0.60 \\ 0.024 \end{gathered}$ | $\begin{gathered} 1.90 \\ 0.075 \end{gathered}$ | $\begin{gathered} 1.50 \\ 0.059 \\ \hline \end{gathered}$ | $\begin{gathered} 1.30 \\ 0.051 \\ \hline \end{gathered}$ | 8 | 4 | 4000 | 10000 |
| $\begin{gathered} 1206 \\ (3216) \end{gathered}$ | $\begin{gathered} \hline 1.1 \pm 0.2 \\ 0.043 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.6 \pm 0.2 \\ 0.063 \\ \hline \end{gathered}$ | $\begin{gathered} 3.2 \pm 0.2 \\ 0.126 \end{gathered}$ | $\begin{gathered} \hline 0.7 \pm 0.3 \\ 0.028 \\ \hline \end{gathered}$ | 0.03 | $\begin{gathered} 1.20 \\ 0.047 \end{gathered}$ | $\begin{aligned} & 2.80 \\ & 0.110 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.80 \\ & 0.071 \end{aligned}$ | $\begin{aligned} & 1.60 \\ & 0.063 \end{aligned}$ | 8 | 4 | 3000 | 10000 |
| $\begin{gathered} 1806 \\ (4516) \end{gathered}$ | $\begin{gathered} 1.6 \pm 0.2 \\ 0.063 \end{gathered}$ | $\begin{gathered} 1.6 \pm 0.2 \\ 0.063 \end{gathered}$ | $\begin{gathered} 4.5 \pm 0.2 \\ 0.177 \end{gathered}$ | $\begin{gathered} 0.7 \pm 0.3 \\ 0.028 \end{gathered}$ | 0.06 | $\begin{gathered} 2.00 \\ 0.079 \end{gathered}$ | $\begin{gathered} 3.90 \\ 0.154 \end{gathered}$ | $\begin{gathered} 1.80 \\ 0.071 \end{gathered}$ | $\begin{aligned} & 1.90 \\ & 0.075 \end{aligned}$ | 12 | 8 | 2000 | 10000 |
| $\begin{gathered} 1812 \\ (4532) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.5 \pm 0.2 \\ 0.059 \end{gathered}$ | $\begin{gathered} \hline 3.2 \pm 0.2 \\ 0.126 \end{gathered}$ | $\begin{gathered} \hline 4.5 \pm 0.2 \\ 0.177 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0.7 \pm 0.3 \\ 0.028 \\ \hline \end{gathered}$ | 0.09 | $\begin{aligned} & \hline 2.00 \\ & 0.079 \end{aligned}$ | $\begin{gathered} 3.90 \\ 0.154 \end{gathered}$ | $\begin{gathered} 3.40 \\ 0.134 \end{gathered}$ | $\begin{aligned} & 1.90 \\ & 0.075 \end{aligned}$ | 12 | 8 | 1000 | 5000 |
| $\begin{gathered} 1813 \\ (4532) \end{gathered}$ | $\begin{gathered} 2.3 \pm 0.25 \\ 0.091 \\ \hline \end{gathered}$ | $\begin{gathered} 3.2 \pm 0.25 \\ 0.126 \\ \hline \end{gathered}$ | $\begin{gathered} 4.5 \pm 0.25 \\ 0.177 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0.7 \pm 0.3 \\ 0.028 \\ \hline \end{gathered}$ | 0.14 | $\begin{gathered} 2.00 \\ 0.079 \\ \hline \end{gathered}$ | $\begin{gathered} 3.90 \\ 0.154 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 3.40 \\ 0.134 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.90 \\ & 0.075 \end{aligned}$ | 12 | 8 | - | 2500 |
| $\begin{gathered} \hline 2218 \\ (5650) \\ \hline \end{gathered}$ | $\begin{gathered} 1.8 \pm 0.25 \\ 0.071 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 5.08 \pm 0.25 \\ 0.200 \\ \hline \end{gathered}$ | $\begin{gathered} 5.59 \pm 0.51 \\ 0.220 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 0.76 \pm 0.35 \\ 0.030 \\ \hline \end{array}$ | 0.21 | $\begin{gathered} 3.00 \\ 0.118 \\ \hline \end{gathered}$ | $\begin{aligned} & 6.10 \\ & 0.240 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.60 \\ & 0.220 \\ & \hline \end{aligned}$ | $\begin{gathered} 3.10 \\ 0.122 \\ \hline \end{gathered}$ | 12 | 8 | - | 2000 |
| $\begin{gathered} 2219 \\ (5650) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1.97 \pm 0.25 \\ 0.071 \\ \hline \end{gathered}$ | $\begin{gathered} 5.08 \pm 0.25 \\ 0.200 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 5.59 \pm 0.51 \\ 0.220 \\ \hline \end{gathered}$ | $\begin{gathered} 0.76 \pm 0.35 \\ 0.030 \\ \hline \end{gathered}$ | 0.23 | $\begin{gathered} 3.00 \\ 0.118 \\ \hline \end{gathered}$ | $\begin{aligned} & 6.10 \\ & 0.240 \\ & \hline \end{aligned}$ | $\begin{gathered} 5.60 \\ 0.220 \\ \hline \end{gathered}$ | $\begin{gathered} 3.10 \\ 0.122 \end{gathered}$ | 12 | 8 | - | 2000 |
| $\begin{gathered} 2220 \\ (5650) \end{gathered}$ | $\begin{gathered} 3.2 \pm 0.25 \\ 0.126 \\ \hline \end{gathered}$ | $\begin{gathered} 5.08 \pm 0.25 \\ 0.200 \end{gathered}$ | $\begin{gathered} 5.59 \pm 0.51 \\ 0.220 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 0.76 \pm 0.35 \\ 0.030 \\ \hline \end{array}$ | 0.38 | $\begin{gathered} 3.00 \\ 0.118 \end{gathered}$ | $\begin{aligned} & 6.10 \\ & 0.240 \end{aligned}$ | $\begin{gathered} 5.60 \\ 0.220 \end{gathered}$ | $\begin{gathered} 3.10 \\ 0.122 \end{gathered}$ | 12 | 8 | - | 2000 |
| $\begin{gathered} 3312 \\ (8530) \end{gathered}$ | $\begin{gathered} 2.28 \pm 0.2 \\ 0.090 \end{gathered}$ | $\begin{gathered} 3.05 \pm 0.2 \\ 0.120 \\ \hline \end{gathered}$ | $\begin{gathered} 8.5 \pm 0.2 \\ 0.335 \end{gathered}$ | $\begin{gathered} 1.09 \pm 0.4 \\ 0.043 \end{gathered}$ | 0.25 | $\begin{gathered} 6.00 \\ 0.236 \end{gathered}$ | $\begin{gathered} 9.50 \\ 0.374 \end{gathered}$ | $\begin{gathered} 3.40 \\ 0.134 \end{gathered}$ | $\begin{gathered} 3.60 \\ 0.142 \end{gathered}$ | 16 | 8 | - | 2500 |

* Fair-Rite sizes "1813", "2218" and "2219" are non standard thicknesses (A dimension).
${ }^{* *}$ For Land Patterns: Fair-Rite's B dimension corresponds to the Land Pattern X dimension
${ }^{* *}$ For Land Patterns: Fair-Rite's C dimension corresponds to the Land Pattern W dimension
Alternate Packaging / Reel Sizes, when available, are special order.
Weight: 0.14 (g)
Package Size: 1813 (4532)

| Dim | mm | mm tol | nominal inch | inch misc. |
| :--- | :--- | :--- | :--- | :--- |


| A | 2.30 | $\pm 0.25$ | 0.091 |  |
| :--- | :--- | :--- | :--- | :--- |
| B | 3.2 | $\pm 0.25$ | 0.126 |  |
| C | 4.5 | $\pm 0.25$ | 0.177 |  |
| D | 0.7 | $\pm 0.3$ | 0.028 |  |

## Land Patterns

| V | W | X | Y | Z |
| :--- | :--- | :--- | :--- | :--- |
| 2.00 | 3.90 | 3.40 | 1.90 |  |
| $\left(0.079^{\prime \prime}\right)$ | $(0.154 \prime)$ | $(0.134 \prime)$ | $\left(0.075^{\prime \prime}\right)$ | - |

## Chart Legend

+ Test frequency

| Typical Impedance $(\Omega)$ |  |
| :--- | :--- |
| 50 MHz | 72 |
| $100 \mathrm{MHz}^{+}$ | $100+/-125 \%$ |
| 500 MHz | 147 |
| $1000 \mathrm{MHz}^{+}$ |  |


| Electrical Properties |  |
| :--- | :--- |
| Max DCR <br> $(\Omega)$ | 0.007 |
| Max Current <br> $(\mathrm{mA})$ | 8000 |

The impedance values listed are typical values. The nominal impedance with a $+/-25 \%$ tolerance is specified for the + marked 100 MHz . Chip beads are measured for impedance on the HP 4291A and fixture HP 16192A.

Chip beads are 100\% tested for impedance and dc resistance.

| Typical Impendance $(\Omega)$ |  |
| :--- | :--- |
| 50 MHz | 70 |
| $100 \mathrm{MHz}^{+}$ | 100 |
| 500 MHz | 148 |
| $1000 \mathrm{MHz}^{+}$ | 148 |




Fair-Rite Products Corp.
One Commercial Row, Wallkill, New York 12589-0288

