

Part Number: 4077375211

77 SOLID ROD

Explanation of Part Numbers: - Digits 1 & 2 = Product Class - Digits 3 & 4 = Material Grade

Pressed Fair-Rite rods are used extensively in high-energy storage designs.

These rods can also be used for inductive components that require temperature stability or have to accommodate large dc bias requirements.

Figure 2 rods have a 0.6 mm (0.024) maximum chamfer on the end faces.

For frequency tuned rod designs see section Antenna/RFID Rods.

For any rod requirement not listed here, feel free to contact our customer service group for availability and pricing.

Catalog Drawing 3D Model

The A dimension can be centerless ground to tighter tolerances.

<u>Weight:</u> 17 (g)

Dim	mm	mm tol	nominal inch	inch misc.				
А	9.45	±0.20	0.372	_	1000			
С	50.8	±1.00	2					
					0			
					Y			
					- A	-	c	-
						Figure 1		

Figure 1 shows the rod permeability as a function of the length to diameter ratio for the six materials available in rods.

Figures 3, 4 and 5 illustrate typical temperature behavior of wound rods. Would rods in 33 and 77 material yield the best temperature stable inductors, see Figure 4. Both show a typical inductance change of <1% over the -40° to 120°C temperature range. The parts have a L/D ratio of 8.1. Lower ratios will change less. This is shown in detail in Figure 5 for the same 52 material but with the L/D ratio as the parameter. A lower ratio means a lower rod permeability but with improved temperature stability.

×

Wound Rod Inductance Calculations

To calculate the inductances of a wound rod the following formula can be used,

×

The inductance modifier is found in Figure 2. The ratio winding length divided by the rod length will give the inductance modifier. If the rod is totally wound the K=1. Shorter but centered winding will yield higher K values.

Using the rod 3061990871 as an example.

For this rod the length over diameter ratio is 8.33 and for 61 material Figure 1 gives a μ rod of 29. The rod has an AE= 0.0707 cm² and ?=2.5 cm.

A winding of 80 turns of 30 AWG wire will yield a fully wound rod, therefore K=1.

Using the formula the calculated inductance is 65.96µH.

The measured values for both winding were 66.95 and 39.50µH respectively.

×

Fair-Rite Products Corp.One Commercial Row, Wallkill, New York 12589-0288888-324-7748845-895-2055Fax: 845-895-2629ferrites@fair-rite.com